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A B S T R A C T

Mass spectrometry (MS) based proteomics has become an indispensable component of modern molecular and
cellular biochemistry analysis. Multiple reaction monitoring (MRM) is one of the most well-established MS
techniques for molecule detection and quantification. Despite its wide usage, there lacks an accurate compu-
tational framework to analyze MRM data, and expert annotation is often required, especially to perform peak
integration. Here we propose a deep learning method PB-Net (Peak Boundary Neural Network), built upon
recent advances in sequential neural networks, for fully automatic chromatographic peak integration. To train
PB-Net, we generated a large dataset of over 170,000 expert annotated peaks from MS transitions spanning a
wide dynamic range, including both peptides and intact glycopeptides. Our model demonstrated outstanding
performances on unseen test samples, reaching near-perfect agreement (Pearson's r 0.997) with human anno-
tated ground truth. Systematic evaluations also show that PB-Net is substantially more robust and accurate
compared to previous state-of-the-art peak integration software. PB-Net can benefit the wide community of mass
spectrometry data analysis, especially in applications involving high-throughput MS experiments. Codes and test
data used in this work are available at https://github.com/miaecle/PB-net.
Significance: Human annotations serve an important role in accurate quantification of multiple reaction mon-
itoring (MRM) experiments, though they are costly to collect and limit analysis throughput. In this work we
proposed and developed a novel technique for the peak-integration step in MRM, based on recent innovations in
sequential deep learning models. We collected in total 170,000 expert-annotated MRM peaks and trained a set of
accurate and robust neural networks for the task. Results demonstrated a substantial improvement over the
current state-of-the-art software for mass spectrometry analysis and comparable level of accuracy and precision
as human annotators.

1. Introduction

Multiple reaction monitoring (MRM) is a technique utilized in
tandem mass spectrometry (MS) which allows for highly sensitive and
specific detection of proteins, lipids, and post-translational modifica-
tions (PTMs), among other analytes [3]. MRM's application of sequen-
tial mass-to-charge ratio (m/z) filters is exemplified by triple-quadru-
pole (QqQ) instruments, which select for a precursor ion m/z in Q1,
fragment in q2, and further select for a specific product ion m/z in Q3,
prior to detection. These steps yield increased dynamic range and
sensitivity in targeted quantification, in comparison to techniques such
as data independent acquisition (DIA), where all resulting fragments
are analyzed and biomarker discovery is often the goal. MRM tech-
nology holds great promise for use in new clinical assays and

diagnostics, but the lack of precise analysis software remains a major
bottleneck.

Traditional analysis of MRM experiments involved choosing the
start and stop of a chromatographic peak by hand, working from
transitions previously characterized by data-dependent acquisition or
other discovery techniques. A typical implementation can be seen in
Agilent's MassHunter software, where intensities are plotted over a pre-
specified range of retention times (RT) for a given precursor and pro-
duct mass-to-charge ratio (referred to as XIC graphs [23] in the fol-
lowing texts). Selection of the beginning and end of the peak yields an
observed RT, peak width, and integrated abundance value. Person to
person variability in assessment, human error, and a large time in-
vestment render this method inadequate for high-throughput usage.

In recent years several software packages [20] have attempted to fill
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this gap by automatically integrating peaks from a list of transitions,
among them OpenMS [22], DIA-Umpire [27], and Skyline [17,23].
Skyline has the largest user base and is arguably the gold standard for
targeted MS quantification of peptides, accepting input formats from a
wide range of MS vendors. While it exhibits good performance on high
abundance peaks (especially peptides from abundant proteins), it can
be less accurate in integrating low-abundant and highly-heterogeneous
species such as glycosylated peptides. Due to the highly variable peak
shape, low signal-noise ratio and complex sample component, it will be
in principle hard to have a comprehensive and robust deterministic
algorithm for peak integration in these cases. Other external issues,
including retention time shift, will further add to the complexity.

In parallel, significant advances in machine learning and deep
learning [13] techniques have been witnessed in recent years,

especially in the field of computer vision [5] and natural language
processing [25,28]. This naturally raises opportunities in applications
of chemistry/biology related problems, such as genome analysis [33],
biomedical image analysis [15] and molecular property predictions
[30]. In the field of mass spectrometry, data-assisted techniques have
also been applied to numerous tasks. Zohora et al. [32] proposed using
a convolutional neural network (CNN) to scan LC-MS maps for peptide
feature detection. Tran et al. [26] used a combination of CNN and long
short-term memory (LSTM) to predict peptide sequence purely from
tandem MS data. Zhou et al. [31] and Ma et al. [16] applied deep neural
networks on the reverse task of predicting experimental mass spectra
patterns and retention time of peptides, respectively. Demichev et al.
[4] applied neural networks in data-independent acquisition for signal
filtering. These works focused on a wide range of different aspects and
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Fig. 1. Model structures and sample inputs/outputs of PB-Net A: Illustration of models for peak boundary prediction. Left half shows the sequential PB-Net composed
of bi-LSTM and self attention layers on sample input, with output directly mapped to predictions (blue). Right half shows the encoding of reference peak with same
network structures. Encodings of sample, reference and human annotated peak start/end (marked as red star and triangle) are cross-linked through the sample-
reference attention layer, generating the predictions for reference-based PB-Net (green). B and C: Example inputs and predictions from the two models. Note that
lower signal-noise ratio in input will cause more noisy boundary predictions. (For interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)
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procedures of mass spectrometry-based proteomics, but none is directly
applicable to the peak quantification task as we are looking at. In this
work, we develop new deep learning models to solve the long-standing
task of chromatographic peak quantification for high-throughput MRM.

To train our deep learning model, we generated a large new dataset
of over 170,000 expert annotated peaks from 210 human serum sam-
ples. This data covers MS transitions spanning a wide dynamic range,
including both peptides and intact glycopeptides. The sequence of in-
tensities within each transition's RT window served as our input fea-
tures, and the human-annotated start and stop RT were our labels.
Together they form a training dataset for a bi-directional recurrent
neural network [18] (RNN) with LSTM [9] units. To the best of our
knowledge, this is the first work to apply deep neural nets in such a
large dataset to the problem of targeted MS quantification.

2. Materials and methods

2.1. Dataset preparation

Two sets of mass spectra experiments were utilized in this study. We
used the first experiment for training and model tuning (validation),
and the second set for test-time evaluation, accepting only the precursor
and product mass-to-charge ratios and RT window as input. Details of
experiments are elaborated in Supplementary Information. Set one
consisted of human serum samples and raw data were provided from a
collaborator's lab at UC Davis (Carlito L, unpublished data), while set
two were commercially-available serum from ovarian cancer and be-
nign mass patients purchased from Indivumed GmbH in mid-2018. Both
sets of samples underwent the same experimental protocol(outlined in
Supplementary Information). Post-run, Agilent.D format files were
converted to mzML via msConvert within the Proteowizard 3.0 soft-
ware suite [10] for bioinformatic processing.

In the first experiment, peaks labeled with zero/low abundances or
high signal-noise ratios were excluded. Samples with large annotation
differences were also excluded. In total, 106,355 peaks (210 serum
samples, 716 transitions, 70.7% of all samples) were generated. This set
was split into a training set with 572 transitions and a validation set
with 144 transitions. The transitions employed were characterized in
previous work [14,19] and had peptide precursors from 5 to 56 amino
acids in length, spanning 65 distinct serum proteins. They included low
abundance, glycosylated proteoforms, and the collected transitions had
an overall dynamic range of four orders of magnitude.

The second experiment was conducted in-house on 135 serum
samples collected from ovarian cancer and benign mass patients. In
total, 503 transitions were evaluated and used exclusively for testing. A
minimum amount of filtering was applied (similar procedure as
training/validation dataset), yielding 67,672 XIC graphs (99.7% of all
samples) for testing. Note that 313 test set transitions were not present
in the train/validation set.

Raw data from mzML were processed to facilitate model training
and calculation: on each transition, all signals within a retention time
window from reference retention time start - 0.2 min to reference re-
tention time stop +0.2 min and a mass-charge ratio window of± 0.1
around the desired precursor and product m/z were collected. Signals
were summed along the mass-charge ratio window first, producing
extracted-ion chromatograms (XIC). Human annotators and all models
except for Skyline are presented with the XIC curves around the target
transition (see Fig. 1B and C, and Fig. 3B for some example XIC inputs).
Skyline was configured to directly calculate on mzML and a transition
list recording precursor m/z, product m/z and rough retention time
window. Note that all filtering and processing steps were performed
before any model training and testing.

Twelve human annotators were employed to label the peak
boundaries based on a reference labeled by a mass spectrometrist, and a
small set of transitions (in total 1619 peaks) were further labeled in-
dependently by all annotators to test for consistency. Complete details

of the MS experiments and dataset preparation pipeline are provided in
the Supplementary Information.

2.2. Sequential neural networks for peak quantification

We extended a bi-directional LSTM, a widely applied method in
time-series applications [7] and natural language processing [24], to
build our peak integration model PeakBoundaryNet (PB-Net). The fra-
mework of the training/prediction process is illustrated in Fig. 1A (left),
in which inputs (XIC graphs) are encoded through two bi-LSTM layers
and a self-attention layer [28] for relating separate positions. The
prediction is performed point-wise, generating a sequence output

∈
×y N 2 � for each input curve. Note that the boundary prediction task

is separated into two independent components: the predictions of peak
start and peak end. In other words, PB-Net outputs two probabilities for
each point on the intensity curve, whether it marks the start and the end
of the peak, forming distributions of boundaries. The model is trained
end-to-end using Adam optimizer [11] on the cross entropy loss be-
tween our prediction and the smoothed label. Minimum hyper-para-
meter search is applied to optimize performance on the leave-out va-
lidation set. Details of network structures and train/validation set
performances are elaborated in Supplementary Information. Results
from the test set are presented in Results sections.

2.3. Reference-based sequential model

Due to the highly variable shape and width of peaks, a unified
prediction model may not generalize well to unseen transitions. Based
on the observation that samples from different patients on the same
transition are consistent in shape, we proposed another variant of PB-
Net, which utilized reference peaks (peaks collected from pooled serum
and annotated by a mass spectrometrist) to refine predictions.

The model is illustrated in Fig. 1A (right). With the same framework
as the vanilla sequential model, the reference-based PB-Net in-
corporated two encoding networks that take a query sample and re-
ference as inputs, respectively. The encoded features for both are
compared and merged in the sample-reference attention layer, gen-
erating predictions. Provided with query peak features, reference peak
features and reference labels, the attention layer will compare query
and reference point by point such that points in the query which are
highly similar to the start/end marks in the reference will obtain higher
predicted probabilities. Given two consistent samples, the ideal atten-
tion map of this operation will be an “identity matrix,” in which points
with the same surroundings are regarded as highly similar (also see Fig.
S1). We added a divergence term between the attention map and a
retention time mapping matrix to achieve this regularization.

Note that in the setting of reference-based prediction, we are no
longer trying to identify the noise-signal transition point, but rather a
good encoding mechanism of the point and its context in order to op-
timize the similarity mapping. In applications, reference-based PB-Net
acts similarly to few-shot learning models [29]. It is trained on pairs of
query/reference, aiming at accurately mapping reference labels to
predictions on the query sample. This naturally allows the model to
perform better on unseen transition peaks as long as a correctly labeled
reference (one or a few samples) is provided.

2.4. Baseline models

The models introduced above were compared with two baseline
predictors in this study. Skyline [17], an open-source software designed
for data analysis of mass spectrometry applications including multiple
reaction monitoring, was applied to calculate peak areas (abundances)
of test samples. We also adapted a deterministic method from a pre-
vious work [2], which will be referred to as the “Rule-based” method in
the following text. We tuned its parameters to maximize train and va-
lidation set performances and applied the same set of parameters during
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test set evaluations. Implementation details and parameters of the
method are elaborated in Supplementary Information.

2.5. Featurization for neural network inputs

Inputs (XIC curves) were formulated as sequences of points on the
intensity-retention time plane, with no fixed start/stop or length. To
generate a uniform representation, we applied featurization on each
sample. Retention times for all points in a single XIC curve were first
centered at the curve's apex position, then expanded by 128 equally
spaced Gaussian bins, ranging from −1 min to 1 min. Intensities were
similarly discretized by applying 256 Gaussian functions on the range
from 0 to 500, assuming that any points with intensities larger than the
top threshold should be regarded as part of the peak. The full input for
each sample curve after the transformations described above was
formed as x ∈ ℝN×384, in which length of the curve N was a variable
ranging from 50 to 300. In reference-based PB-Net training/prediction,
each sample was paired with its reference. The pair of inputs had the
same featurization process as above and were formed as two matrices,
length of which should be close but not necessarily equal.

2.6. Training settings

Both PB-Net and PB-Net with reference sample were implemented
in pytorch [1]. The vanilla sequential variant contained two bi-LSTM
layers and a multi-head attention layer, output of which was passed
through a fully-connected layer and mapped to two tasks, each with
two classes. Softmax was applied to generate probability curves of peak
start/end throughout the sequence.

The reference-based PB-Net contained two sets of sequential net-
work structure (till the self-attention layer) identical to above. Weights
were not shared. A sample-reference attention layer was applied on the
sample encodings (as queries), reference encodings (as keys) and re-
ference labels (as values), and output was directly used as model pre-
dictions for peak start/end probabilities. Models were trained by cross
entropy loss between smoothed labels and the softmax predictions on
the train subset and lightly optimized on the valid set. Detailed struc-
tures and training hyper-parameters can be found in the Supplementary
Information. All related codes for neural network construction and
training, as well as test data for evaluation are available at https://
github.com/miaecle/PB-net.

3. Results

3.1. Boundary prediction performances

We tested PB-Net on the leave-out test set for evaluation.
Predictions were evaluated on two criteria, accuracy in predicting
boundaries (peak start/end) and accuracy in predicting abundances
(peak area). While the former is directly related to the setup of the
problem, the latter will be of much higher importance to downstream
applications, which utilize analyte abundance for analysis.

In predictions, points in the curve with maximum predicted prob-
abilities for the two tasks (peak start/end) are used as markers for
boundaries respectively, which will be referred to as “argmax bound-
aries” in the following text. We calculated mean-absolute-error (MAE)
between argmax boundaries and the human annotations, along with an
accuracy score defined as ratio of samples whose boundary predictions
were within an error threshold of 1.2 s (2 points in a sequence) around
the ground truth annotations. Given that the peak duration was 20 ± 8
seconds (33 ± 14 points in a sequence) in the test set, the error
threshold was small enough so that any boundary prediction within the
window did not significantly change the abundance.

Table 1 presents performance scores of the three tested methods.
Note that Skyline generated abundance predictions only and will not be
evaluated and compared on boundary tasks. Sequential PB-Net

demonstrated significant performance boosts over the rule-based
method and Skyline. Reference-based PB-Net, with the aid of extra re-
ference data, achieved top scores. As rule-based method is tuned to
optimize training/validation set performances(see Table S2), strong
overfitting was observed. In comparison, thanks to the better sample
quality, the two variants of PB-Net achieved MAE of 2.33 and 1.56 s on
the test set respectively, two times smaller than the rule-based method.
Likewise, in accuracy score performance the reference-based PB-Net
took the lead with a 30% advantage over the rule-based method.
Fig. 2A and B show a bar plot and unnormalized cumulative distribu-
tion of boundary prediction error, in which PB-Net presented dis-
tributions with lower error as well as less outliers.

3.2. Abundance prediction performances

For evaluation of abundances, we calculated baseline-adjusted in-
tegrals between ground truth and predicted boundaries respectively. In
this step, other than directly applying the argmax boundaries, we fur-
ther tested a weighted abundance calculation method that regards the
prediction curve of peak boundaries as two probability distributions
and derive the abundance as an average of multiple peak start/end
pairs. This method mainly helped in stabilizing the abundance calcu-
lation and eliminate certain type of outliers. Performances were re-
ported as numbers in parenthesis and its details were discussed in the
Supplementary Information.

Spearman's rank correlation coefficient (Spearman's r) and Pearson
correlation coefficient (Pearson's r) were evaluated between ground
truth and predictions on each individual transition. Due to the wide
range of abundances (1 ~ 1015), Pearson's r will be dominated by
samples with large abundances, so we reported correlations calculated
on log-abundances instead to avoid bias. Average scores over all tran-
sitions are reported in Table 2. Furthermore, for indication of practical
usage, we also reported an accuracy score defined as ratio of samples
whose predicted abundances were within± 5% of the annotated
abundances. Note that this accuracy metric has certain caveat: samples
with deviated boundary predictions may appear to have same abun-
dances if the deviations are on the same direction.

Abundance predictions presented similar results: sequential PB-Net
achieved better and more robust performances on evaluating peak
abundances (Fig. 2C), with an over 20% increase on accuracy(± 5%).
Note that in this problem the influence from errors in boundary pre-
diction will be largely alleviated as boundary points typically con-
tribute little to the overall integral. Correlation scores indicated that PB-
Net performed significantly better than the current off-the-shelf mass
spec data analysis software, with a near-perfect Spearman's correlation
coefficient at 0.984 and 0.992. Intriguingly, the rule-based method also
achieved a higher correlation score than the Skyline predictions. We
speculate that this is due to the complex composition of test samples,
which generated co-eluting peaks or compounds with close retention
time. As we fix our detection window closely around the desired tran-
sition (which is also the setting for human annotators), Skyline might
accidentally pick peaks from different range, resulting in significantly
worse performance.

The alternative weighted abundance calculation method generated
more robust estimates than the argmax boundaries, especially in re-
ference-free cases, raising Pearson's r from 0.989 to 0.997. Increase in

Table 1
Boundary prediction performance on independent test set (67,672 peaks).

Model MAE(second) Boundary Accuracya

Rule-based 4.79 0.285
Sequential PB-Net 2.33 0.432
Reference-based PB-Net 1.56 0.584

a Proportion of samples whose boundary predictions are within 1.2 s error.
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the reference-based PB-Net was relatively minor. As shown in Fig. S2,
this step mainly helped in avoiding outliers whose argmax boundaries
caused significantly lower abundances, which typically suffer from
abnormally high predicted boundary probabilities within the range of
peak (at valley or shoulder points).

3.3. Improved accuracy and consistency by peak references

Between the two PB-Net variants, thanks to the inclusion of extra
reference data, reference-based model demonstrated further improve-
ment over the vanilla sequential model, offering 15% and 10% in-
creases on the accuracy of boundary and abundance predictions.
Individually, we observed the reference-based PB-Net presenting a
better boundary error distribution with fewer outliers (2.2% versus
7.1%, Fig. 2B), consistent with the observation in abundance correla-
tion plots: green points are more concentrated around the center line
while blue points include a few outlying predictions (Fig. 2C).

Apart from improved performance across the mean metrics, the
reference-based PB-Net provided another advantage over the standa-
lone predictor: higher consistency in predictions on the same transitions
across multiple samples. Especially for transitions whose boundaries
could vary due to shoulder and valley points, the reference-based model
tends to follow the same prediction form of its reference (Fig. 3A),
which was the main objective of its model structure design. This is
highly desirable in high throughput experiments, in that abundances
are generated based on the very same standard and hence allow for
more accurate comparison and quantification. It should also be noted
that the strong prior assumption in the model may also hurt its per-
formance in cases of significant retention time shift or strong batch
effect, but incorporating data augmentation with regard to these issues
could largely alleviate their influences (see Fig. S7 for details).

Lastly, it should be emphasized that the reference-based PB-Net
would be most applicable and cost-efficient for high-throughput ex-
periments on the same set of transitions in which manual annotations of
a few high quality reference peaks are reasonable prerequisites. On

most discovery or small scale experiments, the standalone reference-
free PB-Net would be more suitable.

3.4. Comparison with human annotators

To further validate the practical usage of PB-Net, we compared
model predictions against a group of human annotators calculating
peak abundances. Within the test set, we analyzed a subset consisting of
12 transitions for all 135 serum samples, and had all 12 annotators
mark the peak start/end independently. Combined with the original test
set labels, 13 sets of human annotations were prepared for this subset
(note that two sets were annotated by the same individual but at dif-
ferent time, which are still regarded as independent sets). Then we
calculated relative standard deviations for each sample peak across the
13 annotations as a proxy for variations between different annotators,
and compared this with the model predictions' relative errors. Results
are summarized in Fig. 4.

High consistency over annotators was observed over most samples,
as demonstrated by the grey bars in the figure. Mean RSD over all
sample peaks for human annotators was 2.5%. In parallel, both se-
quential PB-Net and reference-based PB-Net performed well on the
subset, achieving mean relative error of 3.5% and 2.1% respectively
compared with human annotator average. This suggests that the dif-
ferences between the algorithmic and human annotations are compar-
able to the variation between human annotators. The distributions of
error, as shown in the blue and green bars, were similar but slightly
worse than the RSD across annotators.

Viewing predictions from each individual annotator as a group, we
then calculated pairwise differences between annotators through the
average of the relative abundance differences on each sample peak. The
outcomes showed a discrepancy between annotators at 0.025 ± 0.009,
in line with the RSD value. At the same time, difference between the
reference-based PB-Net prediction and the 13 annotators was
0.026 ± 0.007, overlapping with the inter-annotator difference.
Corresponding value for the reference-free variant was 0.039 ± 0.005.
Given that the model-human difference was not significantly larger, or
even close in the reference-based case, it is clear that PB-Nets can serve
as good substitutes for manual annotations in this task. We also noted
that the human annotators had a peak with selected start and stop to
serve as a reference for their reads, making their task directly analogous
to the reference-based PB-Net (see Supplementary Information for de-
tails).

3.5. Better performances for “confident” predictions

Another advantage of the point-wise prediction structure is its ea-
siness in estimating prediction certainty. In parallel with internal ways
of quantifying uncertainty [6,8,12,21], we proposed a heuristic of in-
ferring prediction confidence by inspecting the model prediction curves

Fig. 2. Boundary and abundance prediction performances of PB-Net. A: Bar plot of absolute error in boundary predictions on test set. B: Cumulative distributions of
boundary prediction errors. Note that 19,039 (28.1%) samples are out of range (> 6 seconds) in rule-based predictions, 4824 (7.1%) samples in Sequential PB-Net,
1470 (2.2%) samples in Reference-based PB-Net. C: Scatter plot of peak abundance prediction/annotation on the test set. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)

Table 2
Abundance prediction performance on independent test set (67,672 peaks).
Values in parentheses are calculated through the weighted average process
discussed in the text.

Model Log-Abd
Pearson's r

Spearman's r Abundance
Accuracya

Skyline 0.674 0.734 0.527
Rule-based 0.988 0.971 0.585
Sequential PB-Net 0.989 (0.997) 0.984 (0.990) 0.689 (0.652)
Reference-based PB-

Net
0.997 (0.998) 0.992 (0.993) 0.800 (0.762)

a Proportion of samples whose abundance predictions are within±5% error.
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for boundaries. Detailed formulas and explanations are elaborated in
the Supplementary Information. A graphical illustration of the method
is presented in Fig. S3, in which the confidence score is proportional to
the shaded area. In short, we would like the prediction values to be high
(close to 1) and uni-modal, or close if multiple local maximums appear.

We calculated confidence scores for all predictions from both PB-
Nets on the test set and illustrated the histogram in Fig. S4A and C.
Across different confidence cutoffs, we observed a clear trend of per-
formance change. As shown in Fig. S4B and D, prediction errors on
boundaries steadily decreased with increasing confidence, dropping to
near 1 s on the most confident samples.

Correlation of abundances on different confidence intervals are il-
lustrated in Fig. S5. Predictions on high-abundance samples typically
had higher confidence and aligned better with human annotations. On
the top two bins predictions achieved Pearson's r over 0.999. In con-
trast, samples with lower prediction confidence yielded worse perfor-
mance, with higher boundary MAEs and lower abundance correlations.
This was in part due to the worse signal-noise ratio of input samples as
indicated by the low abundances. Overall, the measurement of

confidence served as a good indicator of noise scale and model per-
formance.

4. Discussion

In this work, we demonstrated a sequential neural network built
with LSTM and attention blocks for chromatographic peak quantifica-
tion in multiple reaction monitoring experiments. Two variants were
designed for the task: the reference-free sequential PB-Net can solely
work on the sample input and provide reasonable estimates of peak
start and end; the reference-based PB-Net further improved the pre-
diction accuracy through incorporating human-annotated reference
information. In consideration of real world usage, the reference-free
version will be universally applicable, especially for experiments on
small scale or designed for discovery purposes. The reference-based PB-
Net, as restricted by requirement of human-annotated samples, can only
be utilized for applications on larger scales, with its higher accuracy
and consistency as return.

We trained and tested the above models on two datasets acquired

Fig. 3. Reference and sample peaks for a representative transition. A: In reference peak, grey line represents the input curve; red star and red triangle are human
annotated peak start and end; blue/green solid line and dashed line indicate predictions from sequential/reference-based PB-Net of peak start and end probabilities.
B: Sample peaks for the same transition with different input curves. Note that reference-based models (green) output much more consistent predictions. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 4. Relative standard deviations (RSD) of human annota-
tors and relative errors (RE) of PB-Net predictions. Grey bar
illustrated RSD between 13 sets of independent human an-
notations, blue and cyan bars showed RE of sequential and
reference-based PB-Net predictions against means of human
annotations. (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of
this article.)
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from different sources and with different contents (transitions).
Outcomes showed that both models significantly outperformed the
baseline Skyline prediction and rule-based model on boundary and
abundance prediction tasks. Robustness of predictions can be improved
by adopting a weighted average step in abundance calculation, which
helped in avoiding outliers from predictions with abnormal argmax
points. A further comparison with human annotators proved their
practicability as their performances lied in the region of normal var-
iations within different annotators. The other contribution of this work
consisted in providing a method of interpreting output structure of the
sequential models, as we demonstrated a heuristic for estimating pre-
diction confidence. A clear trend of higher performance on more con-
fident predictions was observed, with most peaks with large abun-
dances also being highly confident in their predictions. This
measurement provided versatility in implementing workflow quality
control, such as setting up a threshold confidence where predictions
below the value should be excluded or presented to human experts for
re-evaluation.

There are some limitations for PB-Net and its applications. Though
predictions on Gaussian, high-abundance peaks are typically accurate,
predictions will become relatively noisy in cases of inputs with low
signal-noise ratio. The direct consequence would be arbitrary argmax
boundaries, as the apex points of predicted probability curves are
highly variable under minor changes of input. In the text, we proposed
two ways to circumvent the issue: by imposing a reference prior, and by
using weighted average abundances, though both come with limita-
tions. Calculating and presenting the confidence could be another so-
lution, such as abstaining when predictions are highly inconfident. A
potential improvement will be to propose multiple possible boundaries
for a single noisy input and evaluate them either through post-proces-
sing (including having experts check) or by calculating voting scores
from network's output. As these changes involve complicated changes
in either network structure or dataset preparation, they are interesting
directions for future work.

The other issue in applications is that a rough retention time
window must be specified for the predictions. As this work mainly fo-
cuses on determination of precise boundaries given a rough window of
a transition, the whole peak must be located within the input window
and there should not be any other significant peaks in the same
window. In the test set we collected, fixed windows were applied on the
set of pre-defined transitions which did not have identified co-eluting
components, and experiments were carried out in relatively stable
conditions. In general applications, this step of window selection should
be done prior to the model predictions, which fits most selective reac-
tion monitoring experiments. In cases when such information is not
available, a feasible pipeline will be setting up a larger window and
applying detection algorithms to capture the rough positions of peaks
prior to predictions. Given the complex composition of serum samples,
more exterior information on the surrounding co-eluting peaks, addi-
tional transitions, or a very comprehensive reference sample will be
necessary to support this step.

A common technique is to utilize multiple transitions to refine the
quantification of one component. This has not been discussed in this
work, due to the limitations from the setup of our experimental data.
Intuitively, this could be achieved by overlaying predictions for mul-
tiple transitions in the same retention time period and performing a
“pooling” operation to combine the posteriors. This post-processing
step should improve both the accuracy and the smoothness/signal-to-
noise ratio of model predictions, and we would like to perform a more
detailed study for future experiments.

5. Conclusion

In summary, PB-Net provides an accurate and cost-efficient sub-
stitute for the conventional manual peak picking pipeline. Maintaining
the same level of accuracy, our fully automatic model reduces

annotation time cost from 30 s per peak to a matter of milliseconds.
Though certain caveats exist, PB-Net demonstrate the utility of deep
learning approaches in MS. We believe this contribution will facilitate
further advancements in mass spectrometry data analysis, as well as
applications involving high-throughput MS experiments.
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